
Machine learning in building management 

faces challenges due to the unique 

characteristics of each building, hindering 

broad applicability and scalability. The field 

is evolving to address these challenges by 

leveraging explicit and cognitive knowledge: 

explicit for structured problem-solving like 

HVAC troubleshooting through knowledge 

graphs, and cognitive for understanding 

complex interactions through historical data 

analysis. Key issues include the necessity 

for building-specific models, ensuring model 

robustness, and bridging professional trust 

gaps. Innovative approaches like transfer 

learning, which involves training models 

on extensive data from one building and 

fine-tuning with data from another, and 

probabilistic predictions, which account for 

uncertainty, are showing promise. These 

strategies are enhancing the adaptability, 

scalability, and trustworthiness of machine 

learning solutions in building management, 

marking significant progress in the field.
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Machine Learning for effective building 
management

The European Union’s Smart Readiness Index is at the 
forefront of promoting this digital shift. However, this 
move towards digitalization generates vast amounts of 
data, which can be overwhelming for manual processing. 

In this scenario, cutting-edge technologies such as 
Artificial Intelligence (AI) and Machine Learning (ML) 
emerge as vital tools. They have the capability to effi-
ciently process and interpret large data sets, playing a 
crucial role in the reduction of carbon emissions.

Building data is available in multiple layers of detail. At 
the macro level, we can track overall energy consump-
tion. On a more detailed scale, we can examine data 
from specific subsystems like heating, cooling, and 
ventilation. Going even further, it’s possible to monitor 
particular settings and metrics within these subsystems. 
Additionally, factoring in variables related to building 
occupants – such as their schedules, count, satisfaction, 
and comfort levels – alongside facility management 
aspects like maintenance schedules and costs, gives us 
a more complete picture of a building’s operations. 
Navigating through this extensive array of data can 
be daunting. This is precisely where AI and ML prove 
to be indispensable. They enable us to make sense of 
and effectively utilize this vast amount of information.

Challenges of wider usage of ML

A lot of the existing research is quite localized and 
narrow in scope, often with researchers focusing on 
data from their own institutions, such as universities or 
campuses (Miller, 2019). In these environments, they 
develop and test algorithms. The major drawback of 
this approach is its limited external validation: these 
solutions aren’t extensively tested across various types 
of buildings. This lack of diverse application testing 
restricts the broader implementation of machine 
learning in optimizing building efficiency. As a result, 
the potential of machine learning in this field is not 
fully realized, underlining the need for more general-
ized and widely applicable research.

The distinct characteristics of each building pose a 
substantial challenge to the scalability of machine 
learning solutions in this domain. Buildings differ sig-
nificantly in aspects such as their geographic location, 
physical properties, technical systems, control logic, 
and patterns of use. For example, a building’s location 
affects its exposure to specific climate and weather 
conditions. Its technical systems can vary widely in 
terms of age and functionality, and the control logic 
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implemented might be unique to that building. 
Moreover, even buildings that are physically identical 
can have vastly different usage patterns. Consequently, 
a machine learning model trained on the data from 
one building may not perform well when applied to 
another. This inability to generalize effectively across 
different buildings is a major obstacle to scaling 
machine learning solutions in building management.

Two knowledge types in the built 
environment

Addressing the challenges in scaling machine learning 
for buildings can be approached by harnessing the 
two primary types of knowledge in the built environ-
ment: explicit and cognitive, as depicted in Figure 1. 
Explicit knowledge is programmable, meaning it can 
be systematically codified and queried. For example, 
consider a scenario where a room is overly warm. You 
can follow a set of programmable links to pinpoint 
the issue: the thermometer in Room X connects to a 
specific ventilation system, which in turn is linked to a 
particular heating coil. This chain of ‘cause-and-effect’ 
is programmable and can be directly queried.

In contrast, cognitive knowledge emerges from obser-
vation and experience. It involves understanding 
complex interactions, like how room temperature varies 
with different heating levels, a task complicated by the 
multitude of influencing parameters. Machine learning 
excels here by learning the dynamics of a room from 
historical data. This process of learning and analysis 
helps in making accurate predictions, performing 
classifications, and conducting further analyses, thus 
enabling a deeper understanding of the more subtle 
and intricate aspects of building management.

Indeed, explicit knowledge in building management 
can be effectively captured and utilized through 
knowledge graphs. A knowledge graph is essentially a 
structured way of organizing information, enabling a 
computer to understand and interpret the relationships 

and connections between various data points or 
entities. In the context of building management, this 
becomes a powerful tool to transform intricate HVAC 
schematics into clear, comprehensible data structures 
that computers can work with.

For example, in Figure 2 example is shown from paper 
by Kukkonen et al (Kukkonen et al., 2022). these 
graphs can illustrate the relationships between different 
components in a building, such as which terminals are 
connected to pump. This structured format of infor-
mation can then be readily queried for a variety of 
applications. If there’s an issue with the heating system, 
for instance, specific prechecks can be programmed 
or machine learning-based queries can be utilized. 
The computer, using the knowledge graph much 
like a database, can then provide insightful answers. 
Knowledge graphs thus transform complex building 
systems into accessible and actionable data. This not 
only simplifies the process of troubleshooting but also 
enhances overall management efficiency, making the 
system more responsive and intelligent.

Cognitive knowledge in the context of building man-
agement is well-suited for characterization through 
machine learning. However, applying machine 
learning at scale in the built environment is fraught 
with challenges. Firstly, the typical approach of 
building unique models for each building is resource-
intensive. It requires extensive manual data collection 
and individual model setup, leading to significant 
costs. Secondly, there’s the challenge of model robust-
ness. Often, models developed for one specific context 
may not perform effectively when applied in a slightly 
different environment. This limitation can severely 
restrict their practical utility. Thirdly, there is a notable 
trust gap, especially among building professionals who 
may not be familiar with machine learning. The com-
plexity and sometimes perceived opacity of these 
models can lead to skepticism regarding their predic-
tions and overall reliability. Finally, the dynamic nature 
of buildings presents a significant hurdle. Buildings 
undergo continuous changes — retrofits, upgrades, 
or shifts in usage patterns. As a result, a model trained 
on historical data may quickly become outdated or 
inaccurate, failing to adapt to new circumstances.

Potential solutions for scaling Machine 
Learning

These challenges highlight the pressing need for more 
adaptable, robust, and transparent ML solutions in 
the built environment. Such solutions should not 
only be technically proficient but also accessible and 

Figure 1. Illustration of two knowledge types in the 
built environment: Explicit and Cognitive knowledge.
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understandable to professionals in the field, ensuring 
their wider acceptance and effective integration into 
building management practices.

The exploration of transfer learning as a solution for 
scaling ML in the built environment is indeed a sig-
nificant stride in this field. Transfer learning offers a 
practical and efficient way to apply machine learning 
models across different buildings, overcoming some 
of the key challenges associated with building-spe-
cific model development. The concept of utilizing a 
pre-trained model on a new building is particularly 
noteworthy. By training a model extensively on one 
building where there is a wealth of data, and then 
fine-tuning it with a smaller data set from a new 
building. This method not only saves time but also 
makes the process more scalable and feasible across 
various building types and environments.

We have worked on predicting room occupancy with 
transfer learning method, where I trained a model ini-
tially on a meeting room with abundant occupancy 
data, and then fine-tuning it with limited data from a 

room in a completely different building, which showed 
promising results (Stjelja et al., 2022). The fact that 
the model performed satisfactorily despite significant 
differences in building size and HVAC systems is 
particularly promising. It underscores the potential 
of transfer learning to revolutionize the application of 
ML in the built environment, making it more scalable, 
efficient, and adaptable to varying building dynamics. 
This approach could indeed be a game-changer in 
enhancing the application of ML for building man-
agement and energy efficiency.

Another promising avenue for scaling ML in building 
applications is the use of probabilistic predictions, a 
method we explore in depth in my research (Stjelja et 
al., n.d.). This approach enhances model robustness 
and bolsters user confidence in AI systems. Adopting 
probabilistic predictions moves beyond the limitations 
of single-point forecasting by embracing a methodology 
that inherently accounts for uncertainty. The concept 
of estimating an entire distribution, rather than a single 
outcome, brings a critical dimension of realism and 
practicality to ML models. By incorporating uncertainty 

Figure 2. Example of knowledge graph showing fluid flow from heat exchanger through a pump to radiators. Kukkonen et al.
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quantification, these models not only provide predic-
tions but also communicate the confidence level or 
potential variability in these predictions, potentially 
bridging the gap in trust and confidence among pro-
fessionals skeptical of ML’s black-box nature. This 
aspect is particularly valuable in complex systems like 
buildings, where numerous variables and unpredictable 
factors come into play. In this paper we compare two 
approaches of predicting building energy consumption 
between two probabilistic algorithms. Furthermore, 
these predictions are then used for the detection of drift 
anomalies. The proposed method doesn’t alert to imme-
diate issues but alerts of emerging trends or irregularities 
that could become problematic if unaddressed.

Promising directions

The identified areas of research present promising direc-
tions for future investigations aimed at enhancing the 
scalability of machine learning for building operations. 
Each area offers distinct solutions and perspectives that 
could considerably propel the field forward.

•	 Continual Learning: This area focuses on the 
dynamic aspect of machine learning models, 
particularly their ability to adapt continually as 
buildings evolve. This is crucial in the context of 
buildings, which undergo regular changes in struc-
ture, usage, or systems. Continual learning ensures 
that machine learning models remain relevant and 
accurate over time, adjusting to new data and condi-
tions. Example is this large-scale comparison and 
demonstration of continual learning in building 
operation (Li et al., 2023).

•	 Explainable AI (XAI): The field of Explainable AI 
is gaining traction, particularly for its potential 
to demystify the decision-making processes of AI 
models. By making AI predictions more transparent 
and understandable, XAI could greatly enhance 
trust and confidence among building management 
professionals. This is particularly important for 
those who might be hesitant to rely on AI due to 
its perceived opacity. This review paper shows state 
of the art research on XAI topic in this field (Chen 
et al., 2023).

•	 Few-Shot Learning: This approach is particularly 
relevant for situations where data is scarce, such as 
in new or recently retrofitted buildings. Few-shot 
learning allows for the training of effective machine 
learning models using minimal data points, which is 
a significant advantage in scenarios where extensive 
historical data is not available. Interesting paper 
using few-shot building energy prediction is (Tang 
et al., 2023).

•	 Transfer Learning: For a comprehensive under-
standing of transfer learning in building 
management, review paper by Pinto et al. could 
be a valuable resource (Pinto et al., 2022). Transfer 
learning, as highlighted, can address the issues 
of scalability and data requirement in deploying 
machine learning models across different buildings.

These research areas collectively represent the fore-
front of AI and ML in building management. They 
offer promising solutions to overcome current chal-
lenges and pave the way for more efficient, adaptable, 
and trustworthy AI applications in this domain. For 
professionals and researchers interested in this field, 
delving into these topics would provide a deeper 
understanding of the potential and direction of AI in 
the built environment. 
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