
Abstract

Personal Comfort Models (PCM) is a data-driven 
approach to model thermal comfort at an individual 
level. It takes advantage of concepts such as machine 
learning and Internet of Things (IoT), combining feed-
back from occupants and local thermal environment 
measurements. The framework presented in this paper 
evaluates the performance of PCM and PMV regarding 
the prediction of personal thermal preferences. Air 
temperature and relative humidity measurements were 
combined with thermal preference votes obtained from 

a field study. This data was used to train three machine 
learning methods focused on PCM: Artificial Neural 
Network (ANN), Naive-Bayes (NB) and Fuzzy Logic 
(FL); comparing them with a PMV-based algorithm. 
The results showed that all methods had a better overall 
performance than guessing randomly the thermal pref-
erences votes. In addition, there was not a difference 
between the performance of the PCM and PMV-based 
algorithms. Finally, the PMV-based method predicted 
well thermal preferences of individuals, having a 70% 
probability of predicting them correctly.
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1 Introduction

The prevalent approach for design of thermal comfort 
in HVAC systems worldwide is based on the Predicted 
Mean Vote (PMV) model [1, 2]. This model predicts 
the overall thermal sensation of occupants, based on two 
personal parameters: metabolic rate, clothing level; and 
four environmental variables: relative humidity, mean 
radiant temperature, air temperature and air velocity. 
However, the method requires data that is difficult to 
estimate in real applications, such as: metabolic activity 
rate and clothing level. In addition, the PMV is not able 
to re-learn from new data since the input parameters it 
uses are fixed in the model. Lastly, the model had a poor 
predictability performance when applied to individuals 
in some field studies [3-5]. In the last years, a new 
approach to model thermal comfort has been suggested, 
taking advantage of modern data modelling techniques, 
named Personal Comfort Models (PCM). They take 
individuals as units of analysis, where measured data 
is combined with feedback from occupants to create 
models that predict individual responses [6]. PCM are 
based on data that is easy-to-obtain and cost-effective, 
using machine learning algorithms for data processing. 
Different algorithms and sources of information can be 
used, adding flexibility to the data modelling.

The framework described in this report evaluates 
the performance of three different machine learning 
techniques and compares them with an algorithm 
grounded on the PMV model. Data obtained from 
a participatory sensing assessment in two university 
offices was used to compare all the methods in terms of 
the prediction of thermal preference votes. This project 
contributes with the following: (1) A field evaluation of 
a thermal comfort web-based survey, (2) A performance 
evaluation of four methods: Artificial Neural Networks 
(ANN), Naive-Bayes (NB), Fuzzy Logic (FL) and 
Predicted Mean Vote (PMV) with regards to thermal 
preference predictability.

2 Related work
Different approaches to model thermal comfort at a 
personal level have been made in recent years. Many of 
the initial attempts originated from multidisciplinary 
efforts rather than thermal comfort research alone. A 
number of those studies used the PMV index as the 
metric to integrate thermal comfort in learning algo-
rithms [7–10]. All of them employed a multi-valued 
logic called fuzzy logic to characterize different thermal 
comfort categories given by the PMV. This approach 
has the limitations of the PMV model: the difficulty 
to account for personal parameters and is not focused 

on individuals. As a result, there is a growing interest 
to develop methods that employ data easy and cheap 
to measure, taking advantage of state-of-the-art mathe-
matical modelling methods. Different machine learning 
techniques have been tried depending on the available 
data and the focus of the method. Bayesian networks 
was the tool implemented by [11] to model thermal 
comfort preferences. This framework achieved a 70% 
accuracy when predicting thermal preference votes from 
occupants in a field study. The same learning technique 
was used by [3] to determine comfort temperatures 
with the ASHRAE RP-884 data base, a set of data 
used to develop the Adaptive Thermal Comfort Model 
[12]. The approach showed an improved performance 
compared to conventional thermal comfort models 
such as PMV and the Adaptive model. Artificial Neural 
Networks were implemented by [13] to model thermal 
sensation. This approach showed 80% accuracy when 
predicting occupants’ votes in a field evaluation.

Despite the above, there has not been many applica-
tions of PCM in field studies for long periods. Fuzzy 
logic controllers were employed by [14, 15] to model 
thermal preferences from occupants in offices. That 
information was used together with ventilation airflow 
measurements to control a HVAC system for a period of 
13 and 14 weeks. The results showed 12–39% airflow 
reduction and an improvement of thermal comfort 
when using the methods based on fuzzy logic. However, 
the performance of a participatory sensing method-
ology relies substantially on the degree of participation 
of the occupants. Keeping the consistency of occupants’ 
participation is a challenging task. Different types of 
survey interfaces were tested by [16], proposing a plain 
slider scale that improves participation and consistency 
when carrying out a participatory sensing approach.

To avoid relying on occupants’ feedback, several investi-
gations were made to find correlations between human 
behaviour and thermal comfort. A Personal Comfort 
System (PCS) was applied by [6], consisting of a device 
that allowed occupants to regulate the temperature in 
their local working area, using a custom-built seat. 
Occupants’ behaviour when regulating their local 
thermal environment was combined with surveyed 
information and thermal environment measurements. 
This information was used as input to six different 
PCM-based machine learning algorithms to predict 
thermal preference votes. The results showed that the 
PCM had an average prediction accuracy of 73%, 
which was better than the performance of conven-
tional thermal comfort models, which only had a 53% 
accuracy.
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The implementation of PCM in real HVAC applica-
tions is still a developing task. More field studies are 
needed to test the performance of data-driven methods 
when predicting personal thermal responses.

3 Methodology
A field assessment based on a field study was carried out 
in two offices at the Technical University of Denmark. 
Thermal preference votes from six participants were 
obtained continuously during a period of thirteen days. 
Occupants were provided with a web-based survey that 
could be accessed either by smart-phones or personal 
computers. During that period, the thermal environ-
ment in the room was modified in a non-systematic 
manner by opening windows, turning on/off electric 
heaters and controlling water flows inside radiators. Air 
temperature Ta and relative humidity RH were recorded 
periodically every 5 minutes at the local workplace of 
each occupant by using HOBO-loggers as measuring 
instruments [17]. This procedure was used to obtain 
a wide range of thermal preference votes as a result of 
having different levels of thermal environment inside 
the offices.

The aim of the evaluation was to characterize the 
performance of four algorithms when predicting 
thermal preference categories or classes, generated from 
the participatory sensing votes. The numerical value of 
a vote is called Thermal Preference Value (TPV), which 
can take values between 0 and 18. Three different classes 
were generated from the TPV as follows: from 0 to 7 
corresponded to “Colder”, from 8 to 10 were consid-
ered as “No change” and 11 to 18 were considered 
as “Warmer”. A thermal preference category with its 
corresponding Ta and RH measurement formed a data 
point. The total number of data points gathered along 
the evaluation period was divided into data used for 
training and testing the 
learning algorithms. 
How good the perfor-
mance of an algorithm 
was depended on 
how well it predicted 
thermal preference 
classes based on unseen 
Ta and RH measure-
ments or testing data. 
The ratio between 
training and testing 
data was optimized in 
a sensitivity analysis, 
evaluating the outcome 

in terms of classification performance. An algorithm 
that has a good performance of predicting thermal 
preferences is able to provide an accurate description 
of occupants’ individual comfort zones. Thus, HVAC 
control systems can benefit from the inclusion of such 
algorithms to provide an adequate indoor environ-
ment, specific for different requirements and working 
conditions.

3.1. Field study
Occupants were asked to answer a simple question: 
How would you prefer the temperature? The answer was 
given in a snapping scale, where it was possible to select: 
much colder, no change, much warmer or any value in 
between, as shown in Figure 1 (left). After each vote 
was made, a graphical feedback was given to every 
participant, illustrated in Figure 1 (right). This plot 
showed the total number of daily votes per category in 
the room to encourage occupants’ continued partici-
pation. All six participants were requested to vote as 
many times as they could. They were provided with 
daily reminders during the evaluation period. The only 
restriction for the participants was not to vote with 
a minimum timespan of 15 minutes between votes. 
This condition was to avoid having persistent occu-
pants expecting to get a rapid change of their current 
thermal environment. However, all votes were taken 
into account in the assessment, no matter the period 
of time between them. The design of the participa-
tory sensing survey aimed to maintain participation 
along the evaluation period and improve consistency, 
according to the findings of [16].

3.2. Algorithms
The methods applied in this study provided a rather 
intuitive application and did not consider a large 
number of assumptions with respect to the data used 
to train them. This allowed implementing the algo-

Figure 1. Survey implemented in the field experiment.
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rithms without adjusting many parameters, thus, it 
was straightforward to determine their optimal perfor-
mance. A brief description of the methods and consid-
erations taken into account are presented as follows:

3.2.1 Artificial Neural Networks (ANN)
ANN is a method used to solve non-linear problems 
by using a network composed of individual elements 
or so-called neurons. In each neuron, different types 
of mathematical transformations or transfer functions 
are used. The outcome of this technique is a network 
where the weight of each neuron has been optimized 
to minimize the error between the output of the 
network and the data used for training. ANN was 
implemented by using the Matlab Artificial Network 
Toolbox. Three different types of transfer functions 
were tested: Log-Sigmoid (logsig), Hyperbolic-
Tangent Sigmoid (tansig) and Linear transformation 
(purelin). An iterative process was carried out through 
a method called Levenberg-Marquardt backpropaga-
tion (LM-BP) [18].

3.2.2 Naive-Bayes (NB)
The NB method uses the basic principles of prob-
ability, based on the application of the Bayes theorem. 
This states that the probability of a given event is 
calculated from previous knowledge about conditions 
related to an event. In particular, the term “naive” 
comes from the assumption that different factors that 
affect the event are independent of each other, also 
named conditional independence. In this method, it 
is also assumed that all thermal preference categories 
or classes have the same distribution. To implement 
this method, first a Probability Density Function 
(PDF) was selected and applied to the training data, 
calculating the mean and standard deviation of each 
parameter. These two statistical parameters were used 
to calculate the probability of a certain class of unseen 
data, used for testing [18].

3.2.3 Fuzzy logic (FL)
FL is a multi-valued logic grounded on the statement 
that the truth of an affirmation is a matter of degree, 
first introduced by [19]. Unlike in classical logic where 
a variable can be either 1 or 0, in FL a variable can also 
be any value in between those numbers. The data in FL 
is classified as fuzzy sets, which represent linguistic vari-
ables (e.g., hot, cold, low or high). How much a data 
point belongs to a fuzzy set is given by a membership 
degree. The framework applied to develop the FL algo-
rithm was based on the study from Jazizadeh et al [14]. 
This approach was grounded on the Wang-Mendel 
method to create fuzzy logic descriptive models [20].

3.2.4 Predicted Mean Vote (PMV)
The PMV-based method considered that a PMV 
index below -0.5 corresponds to a preference towards 
“Warmer”, above 0.5 is associated with a preference 
to the class “Colder” and values between -0.5 and 0.5 
indicate a preference of “No change”. The implemen-
tation of the PMV model was performed by applying 
in Matlab the algorithm defined in ASHRAE 55 
[21]. Three input parameters to determine the PMV 
index were varied in the method to establish the best 
performing configuration in terms of classification 
performance. The clothing level was varied between 
0.5-1.2 [clo] accounting for typical garments for 
summer and winter respectively; the metabolic 
activity rate between 1-2.1 [met] was tested, corre-
sponding to a range of physical activities that can 
be performed in offices, from being seated, relaxed 
to walking; and the mean air velocity was varied 
between 0-0.12 [m/s] representing the maximum 
range allowed in landscaped offices, according to 
ISO 7730 [22].

3.3 Performance evaluation
Identification of the category or class a new data 
point belongs corresponds to a classification 
problem. The algorithms tested in this assessment 
were evaluated by their capacity to classify thermal 
preference categories based on thermal environment 
measurements. How good a classification algorithm 
(or classifier) performed depended on the number 
of correct and incorrect guesses. When a data point 
was correctly allocated in a certain category “A”, it 
was called true positive. Similarly, the data that was 
correctly not allocated in that category was called 
true negative. On the other hand, the data that was 
incorrectly classified as “A” was called false positive. 
Finally, false negatives were data that was supposed 
to be “A” but was classified in another category. The 
True Positive Rate (TPR), also named hit rate or 
recall, is defined as the ratio between the number 
of true positives and the total number of positives. 
The False Positive Rate (FPR) or false alarm rate, 
corresponds to the ratio between the number of false 
positives and the total number of negatives. TPR 
states the proportion of positives correctly classified, 
whereas the FPR gives the probability of wrongly 
allocating a category as negative. From TPR and 
FPR, the Receiver Operating Characteristics (ROC) 
was obtained [23]. The ROC is a two-dimensional 
plot, where FPR is placed on the x-axis and the TPR 
on the y-axis, as shown in Figure 2. This graph 
represents the trade-off between benefits (true posi-
tives) and costs (false positives).
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The analysis of the classification performance in the 
framework presented in this report is based on the Area 
Under the Curve (AUC), which is a scalar number that 
simply represents the area under the ROC curve. The 
AUC is equivalent to the probability that a classifier 
will rank a randomly selected positive event higher 
than a negative selected one, i.e., the probability that a 
class will be correctly classified as such [23]. It can take 
values between 0 and 1, corresponding to the minimum 
and maximum a classifier can perform. An AUC=0.5 
means that the classifier predicts as many positive 
instances as negative ones, which is called random 
guessing. Accordingly, values above 0.5 are generated 
by well performing classifiers and below 0.5 for poorly 
performing ones. As the aim of the algorithms evalu-
ated in this report was to guess three different thermal 
preference categories, a multi-class AUC was taken 
into account. This approach calculates the average 
AUC of all classes, considering a method called “each 
class against the rest”, represented in Eq. 1 [24]. This 
method assumes that all classes have uniform distribu-
tion, calculating the probability of classifying correctly 
a class against the others, which is then averaged with 
the probability from the rest of the classes.

𝐴𝐴𝐴𝐴𝐶𝐶𝑚𝑚𝑚𝑚 =
∑ 𝐴𝐴𝐴𝐴𝐴𝐴(𝑗𝑗, 𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑗𝑗)𝑐𝑐
𝑗𝑗=1

𝑐𝑐  (1)

Where AUCmc is the multi-class area under the curve, 
c is the total number of classes, j is a class and restj 
represents all the classes different from class j.

4 Results and discussion

During the survey period, occupants were not forced to 
participate nor to provide a specific number of votes to 
avoid influencing their everyday activities. Thereupon, 
the number of votes per participant along the surveyed 
period varied considerably (Figure 3). In spite of the daily 
reminders and the simplicity of the survey, a decreasing 
trend in the number of daily votes provided was observed.

Table 1 illustrates the statistical characteristics of the 
TPV resulting from the assessment. The table shows a 
lack of variability in the votes, considering that occu-
pants could vote within the TPV range between 0 and 
18. A narrower range of TPV was obtained because of 
the reduced variation in the air temperatures (Table 1). 
The percentiles show that the votes were mainly biased 
towards low TPV associated to the category “Colder”. 
This result suggests that the occupants were in general 
more affected by warmer temperatures in the room 
than the opposite. Thus, the data provided to the 
algorithms was not equally distributed among the 

Figure 2. ROC curve example.

Figure 3. Number of daily thermal preference votes 
provided by each occupant along the evaluation period.
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Table 1. Statistical parameters of the TPV per occupant 
obtained from the evaluation. O: Occupant, STD: 
Standard deviation.

O Percentiles 
5/10/90/95

STD Mean Median Number 
of votes

1 3.0/4.4/11.0/11.0 2.5 7.8 8.0 55

2 8.0/9.0/12.0/12.0 1.9 9.7 9.0 80

3 5.0/7.0/10.0/10.0 1.7 8.6 9.0 82

4 7.2/9.0/12.0/13.0 2.0 9.8 9.0 84

5 4.0/5.0/13.0/14.0 3.1 9.4 9.0 110

6 4.7/6.0/14.0/14.3 3.1 10.3 11.0 55
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three classes considered, a problem called imbalanced 
data. In addition, the percentiles reflect that the classes 
were not uniformly distributed, i.e., the probability 
of predicting a vote within a class was not constant. 
As described by [24], uniform distribution is a basic 
assumption to evaluate the classification performance 
of an algorithm by using the multi-class AUC described 
in Eq.1. In practice, it is difficult to have approximately 
the same number of TPV values in each class per occu-
pant. Occupants would need to be exposed to different 
thermal environment conditions during equal periods 
of time when obtaining the training data. It is therefore 
a challenging task to characterize accurately the clas-
sification performance of a learning algorithm that aims 
to predict occupants’ thermal preferences.

The percentiles and standard deviations in Table 1 
show that occupants 1, 5 and 6 provided votes with 
higher variability. The feedback from those three occu-
pants were chosen as input data to test the learning 
algorithms and compare them with the PMV method. 
The reason was to ensure that all the thermal preference 
categories had sufficient data points, minimizing the 
effects of imbalanced data.

Figure 4 shows that all methods had a better perfor-
mance than random guessing (AUC=0.5) thermal pref-
erence categories. Therefore, all classifiers will probably 
predict more positive instances than negative ones. This 
shows a good performance considering that only Ta and 
RH measurements were provided to the methods. The 
classification performance among the occupants was 

mainly affected by how many votes per occupant were 
provided, the distribution of the data points among the 
classes and the consistency of the votes from the occu-
pants. Higher AUC values could be achieved if any of 
those factors were improved. The inclusion of data from 
additional parameters, such as radiant temperature and 
air velocity, could also improve the classification perfor-
mance of the algorithms tested.

Overall, the methods with the highest performance were 
NB and PMV, accounting for a probability of correctly 
predict a class of 73% and 70%, respectively. The NB 
method assumed that Ta and RH were independent 
from each other. It calculated the mean and standard 
deviation of the training data, adjusting a PDF. Hence, 
it did not calculate individual factors related to each 
data point. That was the reason why it performed better 
than the other algorithms. By calculating variables that 
comprise a whole data set, it simplifies the learning 
process.

Figure 5 shows the performance of all methods with 
regards to each thermal preference category. Classifying 
incorrectly a category could yield to serious operational 
problems when applied in reality. Thermal comfort and 
health could be compromised when a HVAC control 
system regulates the thermal environment wrongly. For 
instance, controlling an indoor environment based on 
a preference towards colder temperatures instead of 
warmer, could have serious implications in occupants’ 
well being. Figure 5 shows that all methods except FL 
had a better performance when predicting the “No 

Figure 5. Classification performance represented 
by the AUC value for all four classifier studied, 
taking into account the three thermal preference 
classes predicted.
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into account the data obtained from occupants 1 (O1), 
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change” category than any other class. This is owed 
to the unbalanced data among the classes, presented 
in Table 1.

Some machine learning methods were more sensitive 
to imbalanced data than others were. They tended 
to favour the “no change” class for having the largest 
proportion of data, translated in a larger amount of true 
positives. In that context, the NB method exhibited 
less difference in the prediction of different classes. 
This method reduced the influence of biased data by 
assuming that all classes had the same PDF and by 
calculating parameters that enclose a whole data set. 
To avoid the problem of imbalanced data, it would be 
needed to expose people under uncomfortably warm/
cold environments for a period equal to the period 
they feel comfortable. Since the last is unlikely to be 
applicable in reality, it is desired that the algorithm 
employed to predict thermal preferences overcomes 
the problem of not uniformly distributed classes. For 
that, it is proposed to make a sensitivity analysis of a 
classifier changing the distribution of the training data 
per class [25].

A correlation between the amount of training data 
needed by the learning algorithms and their corre-
sponding classification performance is illustrated in 
Figure 6. This information allows the identification of 
how much the number of votes can be decreased with 
regards to the variation of the performance of a method. 
The data of all the occupants was combined and a linear 
correlation was applied for comparison purposes, even 

though the actual correlation may not be linear. A 
single data point corresponded to a thermal preference 
category with its corresponding measurement of Ta and 
RH (only Ta for the FL method). Figure 6 illustrates 
that all the methods had a performance better than 
random guessing, even when the amount of training 
data was reduced to only 10 data points. The NB was 
not only the best performing method, but also required 
less data to generate a higher AUC compared to the 
other algorithms. The performance of NB and ANN 
increased with an increase of the amount of training 
data, whereas the FL method diminished its perfor-
mance. Unlike the two other learning methods, FL does 
not rely on an iterative process to diminish the error 
during the training process of the algorithm. 

When training the FL method, the first part of the 
training data read by the algorithm was used to 
construct the fuzzy sets. The rest of the training data 
did not contribute to create better fuzzy sets, as they 
were already created by the first data points read. Thus, 
providing more data point to the FL algorithm did not 
improve its performance.

5 Limitations
There are a number of limitations with regards to 
the framework proposed in this assessment. First, the 
evaluation period considered in the field assessment 
was limited. A longer period would allow having more 
input data for the learning algorithms, accounting 
for variations that the thermal preferences may have 
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with different weather conditions. As a result, the clas-
sification performance of the PCM-based algorithms 
could be analyzed with more training data. Second, 
miss-classification costs, i.e., the cost of not classifying 
correctly a category, were not taken into account. In 
reality, it does not have the same implications to classify 
a “Warmer” category as “No change” than classifying it 
as “Colder”. This should be taken into account when 
characterizing the performance of PCM, especially 
when implemented in real applications. Third, it was 
considered that TPV was mainly influenced by air 
temperature and relative humidity. It would be needed 
to determine the required number of votes per occupant 
to minimize the influence of other factors that may 
influence the thermal preference votes. This will help 
to define the minimum number of votes per occupant 
needed to ensure a desired classification performance.

6 Conclusions
Personal Comfort Models (PCM) allow to focus on 
the thermal comfort needs of individuals based on 
local indoor environment measurements and feed-
back provided by them. Three PCM method and a 
PMV-based method were tested in this assessment. 
From the results obtained in this assessment, the 
conclusions were the following:

•• When predicting personal thermal preferences, all 
the four algorithms tested (ANN, NB, FL and PMV) 
showed a better overall performance than guessing 
randomly, even though only air temperature and 
relative humidity were provided as input data.

•• The difference between the performance of the 
PCM-based methods and the PMV-based method 
was very modest.

•• The PMV method was capable of predicting thermal 
comfort at an individual level, with a probability of 
guessing correctly 70% of personal thermal prefer-
ence votes.

•• The NB method was not only the best performing 
method, predicting 73% of the thermal preferences, 
but also performed better at predicting each thermal 
preference category, requiring less training data than 
the other methods.

Future research efforts will be focused on the imple-
mentation of PCM in HVAC control loops, focusing 
on easy-to-obtain data. A field study for a long period 
will be considered in future assessments, accounting for 
the challenge of maintaining occupants’ participation. 
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