
A Multi-Domain Approach to 
Explanatory and Predictive Thermal 

Comfort Modelling in Offices

Abstract: It is well known that physical variables, such as temperature, exert a significant 
influence on occupants’ thermal comfort in office buildings. Despite this knowledge, models 
that are currently used to predict thermal comfort fail to do so accurately, resulting in a 
mismatch between design conditions and actual thermal comfort conditions. The assumption 
is that exclusive attention to physical variables is insufficient for understanding or predicting 
thermal comfort. The question arises as to how a multi-domain approach can aid in 
explaining and predicting thermal comfort in offices. In this study, a unique dataset containing 
indoor environment, demographic, occupancy and personality related variables is used to 
construct two types of thermal comfort models. The dataset contains 524 observations, 
collected during summertime in two office buildings in the Netherlands. Firstly, structural 
equation modelling (SEM) is used to construct an explanatory model, with the aim to identify 
significant variables affecting thermal comfort, as well as the interactions between them. 
Secondly, machine learning is used to train four binary classification models to predict 
thermal discomfort. For the investigated cases, SEM suggests that thermal discomfort is 
significantly affected by (i) temperature, (ii) sound pressure level, (iii) the interaction between 
temperature, sound pressure level and illuminance, and (iv) the interaction between 
gregariousness and occupancy count. The four predictive models are subsequently trained 
using only the significant variables. Nevertheless, the weighted F₁-score for all four models 
ranges between 0.55 and 0.59, indicating weak predictive performance. The results show 
that significant influencers are not necessarily good predictors of thermal discomfort. Future 
researchers are encouraged to combine explanatory and predictive modelling techniques, 
in order to test whether variables that are relevant to the domain are useful for prediction.

Keywords: Thermal comfort, multi-domain, personal domain, interaction effects, structural 
equation modelling, machine learning.
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1. Introduction

Thermal comfort is that condition of mind that 
expresses satisfaction with the thermal environment 
[1]. Building engineers refer to building standards to 
predict the thermal comfort conditions for a given 
design. However, current standards do not always 
produce adequate thermal comfort predictions [2]. 
Researchers in the field of thermal comfort seek 
to understand and predict thermal comfort, using 
explanatory and predictive models. Explanatory 
models typically employ statistical techniques that 
provide insight into what influences thermal comfort 
in offices. Predictive models are built to forecast the 
thermal comfort conditions for a given office space. 

Recent research efforts have focused on multi-domain 
approaches that treat thermal comfort as a combina-
tion of variables belonging to four domains, outlined 
in Figure 1 [3]. Their relevance is apparent but their 
presence in existing thermal comfort models is limited 
[4]. The combined presence of all four domains is 
almost non-existent [4]. Moreover, the majority of 
existing studies focus on explanatory modelling [4]. The 
rift between design conditions and real-world condi-
tions is in part attributable to the absence of a suitable 
thermal comfort model. In consequence, it is important 
to pursue better prediction of thermal comfort in office 
buildings and it is worthwhile doing so using the multi-
domain approach. This study looks at existing thermal 
comfort models to identify potential variables that may 
aid in better explaining and predicting thermal comfort.

1.2 thermal comfort variables

Existing multi-domain studies identify several vari-
ables that are of interest to thermal comfort modelling. 
A list of main effects and interaction effects that are 
supported or rejected by existing research on multi-
domain thermal comfort in offices is composed [4], 
leading to the following hypotheses:

M1:	Air temperature exerts a positive, exponential, 
effect on thermal discomfort.

M2:	Sound pressure exerts a positive effect on 
thermal discomfort.

M3:	Occupant gregariousness exerts a negative effect 
on thermal discomfort.

I1:	 Air temperature exerts a negative effect on the 
interaction effect between sound pressure level 
and illuminance on thermal discomfort.

I2:	 Occupant assertiveness exerts a positive effect 
on the effect of air temperature on thermal 
discomfort.

I3:	 Occupancy count exerts a positive effect on the 
effect of occupant gregariousness on thermal 
discomfort.

The aforementioned hypotheses are tested via an 
explanatory model, using field measurement data. The 
results are used to train a model that aims to predict 
whether office employees are experiencing thermal 
comfort or discomfort. The articulation of the mod-
elling outcome is unprecedented in current literature, 
covering three physical variables (air temperature, 
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Figure 1. Physical, social, contextual and personal variables present in literature, adapted from [3].
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illuminance and sound pressure level), one contex-
tual variable (occupancy count), two personal variables 
(occupant assertiveness and gregariousness) and one 
social variable (gender), in the interest of testing 
whether such a multi-domain approach can aid in a 
better understanding or prediction of thermal (dis)
comfort in offices. 

2. Research methods

The data was collected prior to this study, in two office 
buildings in the Netherlands. The cross-sectional 
campaign was conducted during the years 2015-2018. 
The applied measurement protocol is described in a 
publication by Brink and Mobach [5]. The data points 
used in this study are limited to the warmer months of 
June and July 2016. 623 office employees participated 
in the measurements. The final sample size is equal 
to 522. The data consists of objective and subjective 
measurements.

2.1 explanatory modelling
Explanatory modelling is performed via structural 
equation modelling (SEM); a covariance-based tech-
nique that enables the inclusion of observable and 
unobservable variables. Visualization is done using 
standard LISREL matrix notation [6]. The computa-
tion is performed via the ‘lavaan’ package [7]. 

Table 1 provides an overview of the variables used, 
along with their notation. Variables Tin, SPL, E and 

Nocc are continuous. Variables a1 − a2 and g1 − g4 are 
ordinal. All variables are normalized using min-max 
feature scaling. To account for multivariate non-
normality, robust diagonally weighted least squares 
(DWLS) estimation, known as weighted least square 
mean and variance adjusted estimation (WLSMV) in 
‘lavaan’ package, is used to compute the parameter 
estimates, robust standard errors and fit indices.

2.2 predictive modelling
The predictive model takes the form of a binary classi-
fier that predicts whether a participant is experiencing 
thermal comfort or discomfort. The variables included 
in the model are listed in Table 2. Two linear and 
two non-linear classification algorithms are selected 
and trained using the scikitlearn Python library [8]. 
Po is used for linear algorithms, while P1 is used for 
non-linear algorithms, as the latter are expected to 
capture non-linear relationships. The linear algorithms 

Table 1. Direct and indirect effects included in the SEM model.

Effect Domain Symbol SEM Variable Range [unit]

Direct

Physical

expTin x8 Air temperature 20 – 26 [°C]

SPL x9 Sound pressure level 40 – 70 [dB(A)]

E Illuminancea 0 – 2,000 [lx]

Personal

g1 x1 Gregariousness 

g2 x2 Gregariousness

g3 x3 Gregariousness

h1 y1 General body discomfort

h2 y2 Lower body discomfort 

h3 y3 Upper body discomfort 

Indirect

Physical SPL · E · Tin x10 Sound, illuminance and temperature 

Physical and personal
Tin · a1 x4 Temperature and assertiveness 

Tin · a2 x5 Temperature and assertiveness 

Contextual and personal
Nocc · g1 x6 Occupancy count and gregariousness Nocc < 20

Nocc · g4 x7 Occupancy count and gregariousness Nocc < 20

a The direct effect of illuminance is excluded but illuminance is used to compute SPL · E · Tin.

Table 2. Variables used for prediction.

Variable Symbol

Indoor temperature exponent Po

Indoor temperature P1

Sound pressure level P2

Sound × illuminance × temperature P3

Gregariousness × occupancy count P4

Gender P5

The REHVA European HVAC Journal — October 202258

TOP PAPERS



are logistic regression (LR) and linear support-vector 
machine (L-SVM), while the non-linear algorithms are 
random forest ensemble (RF) and non-linear support-
vector machine that uses the radial basis function 
kernel (RBF-SVM). During the testing phase, the 
models are retrained on 308 observations, comprising 
the training and validation sets, and are tested on the 
remaining 77 observations. Common metrics such as 
the F1-score, accuracy (ACC) and the area under the 
ROC curve (AUC) are used.

4. Results
3.1 structural equation modelling
The outcome of the explanatory modelling phase is a 
SEM model. Figure 2 shows the parameter estimates, 
variance/covariance estimates and factor loadings for 
the explanatory model. The parameter estimates are 
also shown in Table 3. The exponent of air tempera-
ture x8 is expected to have a positive effect on thermal 
discomfort η1. According to the results, the effect of 
x8 on η1 is positive (see Figure 2) and significant 
at 99.9% confidence (z > 3.09, p < 0.001). Sound 
pressure level x9 is expected to exert a positive effect 

on η1. The main effect of sound pressure level x9 is 
found to be positive and significant at approximately 
98% confidence (z > 2.33, p < 0.02). 

The interaction between indoor temperature, sound 
pressure level and illuminance x10 is expected to exert 
a negative effect on η1, such that an increase in indoor 
temperature will result in a decreased audio-visual 
influence. The parameter estimate for the three-way 
interaction x10 is found to be negative and significant at 

Table 3. Parameter estimates for the thermal comfort 
variables included in the SEM model.

Estimate SE Z P(<|z|)

x8 0.643 0.203 3.177 0.001a

x9 0.357 0.151 2.368 0.018b

x10 −0.383 0.196 −1.951 0.051c

ξ1 −0.128 0.174 −0.736 0.462

ξ2 0.104 0.382 0.272 0.785

ξ3 0.394 0.198 1.988 0.047c

a CI – 99.9%. b CI – 98%. c CI – 95%.

Figure 2. Graphical representation of model estimation.
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95% confidence (z > 1.96, p < 0.05). Gregariousness 
x1 is expected to exert a negative effect on η1. The effect 
of x1 on η1 is found to be negative but it is not found 
to be significant. The interaction between assertiveness 
and indoor temperature x2 is expected to be positive, 
to the extent that an increase in temperature will result 
in an increased influence of assertiveness on η1. The 
two-way interaction x2 is found to be positive but it is 
not found to be significant. The interaction between 
gregariousness and occupancy count x3 is expected to 
be positive, such that an increase in occupancy count 
will result in an increased influence of gregariousness 
on η1. The two-way interaction x3 is found to be sig-
nificant at approximately 95% confidence (z > 1.96, 
p < 0.05). As a result, hypotheses M1, M2, I1 and I3 
are not rejected.

3.2 binary classification
The outcome of the predictive modelling phase are 
four models; LR, L-SVM, RF and RBF-SVM. LR is 
fitted as shown in equation (1). The polarity of the 
parameter estimates is consistent with hypotheses M1, 
M2, I1 and I3, suggesting the model learned a similar 
pattern to the one captured using SEM.

𝑃𝑃(𝑌𝑌 = 1|𝑋𝑋) 

= 𝑒𝑒𝑒𝑒𝑒𝑒(−0.27 + 0.29𝑋𝑋0 + 0.30𝑋𝑋2 − 0.13𝑋𝑋3 + 0.17𝑋𝑋4 + 0.23𝑋𝑋5)
1 + 𝑒𝑒𝑒𝑒𝑒𝑒(−0.27 + 0.29𝑋𝑋0 + 0.30𝑋𝑋2 − 0.13𝑋𝑋3 + 0.17𝑋𝑋4 + 0.23𝑋𝑋5)

 

	 (1)𝑃𝑃(𝑌𝑌 = 1|𝑋𝑋) 

= 𝑒𝑒𝑒𝑒𝑒𝑒(−0.27 + 0.29𝑋𝑋0 + 0.30𝑋𝑋2 − 0.13𝑋𝑋3 + 0.17𝑋𝑋4 + 0.23𝑋𝑋5)
1 + 𝑒𝑒𝑒𝑒𝑒𝑒(−0.27 + 0.29𝑋𝑋0 + 0.30𝑋𝑋2 − 0.13𝑋𝑋3 + 0.17𝑋𝑋4 + 0.23𝑋𝑋5)

 

The performance metrics for the validation and testing 
phases are reported in Table 4. The difference in per-
formance across the models is very slight and all four 
models yield similar scores across all three metrics. 
While L-SVM and RF show better ACC and weighted 
F1 on the validation set, they no longer outperform 
the other models on the test set. The increase in ACC 
during the testing phase for all four predictive models 
could be attributed to random variation between data 
splits. The predictive performance of the models is just 

above random guessing (= 0.50) and is not sufficient 
for predicting thermal (dis)comfort.

5. Explaining thermal comfort

The interpretation of the SEM model addresses the 
hypotheses M1− M3 and I1− I3. The model estimates 
do not reject M1, M2, I2 and I3, leading to several 
implications that may be of interest to the under-
standing of thermal comfort in offices:

•	 During the cooling season, an increase in indoor 
temperature results in an exponential increase in 
thermal discomfort.

•	 An increase in sound pressure level results in an 
increase in thermal discomfort.

•	 An increase in air temperature decreases the effect 
that the interaction between sound pressure level and 
illuminance has on thermal discomfort, resulting in 
a negative three-way interaction.

•	 An increase in occupancy count increases the effect 
of occupant gregariousness on thermal discomfort, 
resulting in a positive two-way interaction.

The results support the notion that the model may be 
used to explain thermal comfort. However, the exist-
ence of a near-equivalent model is likely. The reliability 
of the subjective data, particularly assertiveness and 
gregariousness, is questionable. A better fit may be 
achieved via the use of a more extensive and well-
known scale, such as the IPIP-NEO-120 [9].

6. Predicting thermal comfort

The SEM model suggests that Po−P5 significantly 
affect thermal comfort in offices. Yet, the four predic-
tive models are not capable of adequately predicting 
thermal (dis)comfort. Looking at all four outcomes, 
the quality of the data may have introduced noise, 
masking the patterns necessary for making reliable 
predictions. However, real-world data is noisy and 
constitutes a pitfall for even the most prevalent models. 
A predictive model can be expected to perform even 
worse in practice than it does on the mother data set. 
The results show that thermal comfort is a complex, 
multi-domain construct that is difficult to predict. 
However, the performance of the four predictive 
models does not cast a definitive shadow over the 
prospect of accurate prediction. Predictive models that 
include a larger number of thermal comfort variables 
and higher quality subjective measurements may yield 
better predictions. Moreover, other, more advanced 
modelling techniques, such as stochastic modelling, 
may be better suited for thermal comfort prediction.

Table 4. Performance metrics (validation and testing).

Model Set AUC ACC F1 

LR
Valid 0.58 0.56 0.53

Test 0.68 0.56 0.56

L-SVM
Valid 0.58 0.61 0.61

Test 0.67 0.55 0.55

RF
Valid 0.62 0.60 0.60

Test 0.64 0.58 0.59

RBF-SVM
Valid 0.57 0.52 0.48

Test 0.66 0.57 0.58
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7. Conclusion

This study applies the multi-domain approach to 
thermal-comfort modelling. An explanatory model is 
constructed using SEM. The specified model examines 
the influence of indoor temperature, illuminance, 
sound pressure level, occupancy count, gregariousness 
and assertiveness on thermal discomfort. The SEM 
model is unique, as it is the first explanatory model, 
derived from field measurements, to include multiple 
physical and personal variables, while also including 
contextual variables. The following conclusions are 
derived from the explanatory model: 

•	 Thermal discomfort increases at higher indoor 
temperatures and higher sound pressure levels, 
suggesting that both should be optimized and 
maintained.

•	 Uncomfortably high indoor temperatures decrease 
the effect that sound pressure level and illuminance 
otherwise have in a comfortable thermal environ-
ment. This highlights the importance of designing 
for optimal temperature conditions and constitutes 
a basis for the use of personalized strategies.

•	 Gregarious individuals may be more thermally 
comfortable than non-gregarious individuals when 
there are many occupants in the room. Designers 
are encouraged to account for inter-individual dif-
ferences by providing flexible working conditions.

Four predictive models LR, L-SVM, RF and RBF-SVM 
are trained using significant variables Po−P5. The 
models examine the predictive potential of the explana-
tory model. All models struggle to predict thermal (dis)
comfort, despite the inclusion of significant thermal 
comfort variables. The results bring to light several 
conclusions:

•	 Significant thermal comfort influences are not 
always adequate predictors thereof.

•	 Researchers are advised to precede future thermal 
comfort studies with explanatory modelling, to 
facilitate the creation of predictive models that 
contain a large variety of variables. 

•	 Combined use of explanatory and predictive model-
ling is necessary, to test whether variables considered 
in thermal comfort research hold theoretical rel-
evance, predictive potential, both or, perhaps, 
neither.

This study is part of a broader research effort to achieve 
better prediction of thermal comfort in offices, which 
is an essential step in the building design process. The 
results formulate a basis for further research on the influ-
ence of indoor climate, occupancy and personality traits 
on thermal comfort in offices, as well as the interaction 
between the different influences. Moreover, the findings 
have direct implications for the engineering sector, as 
they suggest that influences such as sound pressure level, 
occupancy and personality traits, should be considered 
when designing for optimal thermal conditions. 

6.1 limitations
This research is subject to several limitations, the 
mitigation of which is encouraged in the future. 
Firstly, prominent variables such as correlated colour 
temperature and air velocity are not included in the 
study. Similarly, variables such as age, relative humidity, 
clothing insulation and metabolic rate are excluded due 
to insufficient variability in the measured data. Secondly, 
extreme indoor conditions are not observed during field 
measurements. In addition, the measurements are limited 
to summer conditions in the context of the Netherlands 
and are not representative of cooler conditions or other 
climate regions. Due to this limitation, the relation-
ship between temperature and thermal discomfort is 
assumed to be exponential. Future studies are encour-
aged to include cold sensation data and thereby model a 
parabolic relationship between temperature and thermal 
discomfort, where thermal discomfort increases at lower 
and higher temperatures both. Thirdly, the internal con-
sistency of the personal variables is poor and they are 
not sufficiently representative of the Big Five personality 
traits. Lastly, the quality of the predictive models may 
be improved via the use of advanced hyper-parameter 
tuning, a larger variety of machine learning algorithms 
and more advanced modelling methods.  
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