Low2No Implementation of sustainable principles after design competition

REHVA Annual Conference May 19-20 2011, Tallinn

Vasilis Maroulas,

Arup Consulting, UK

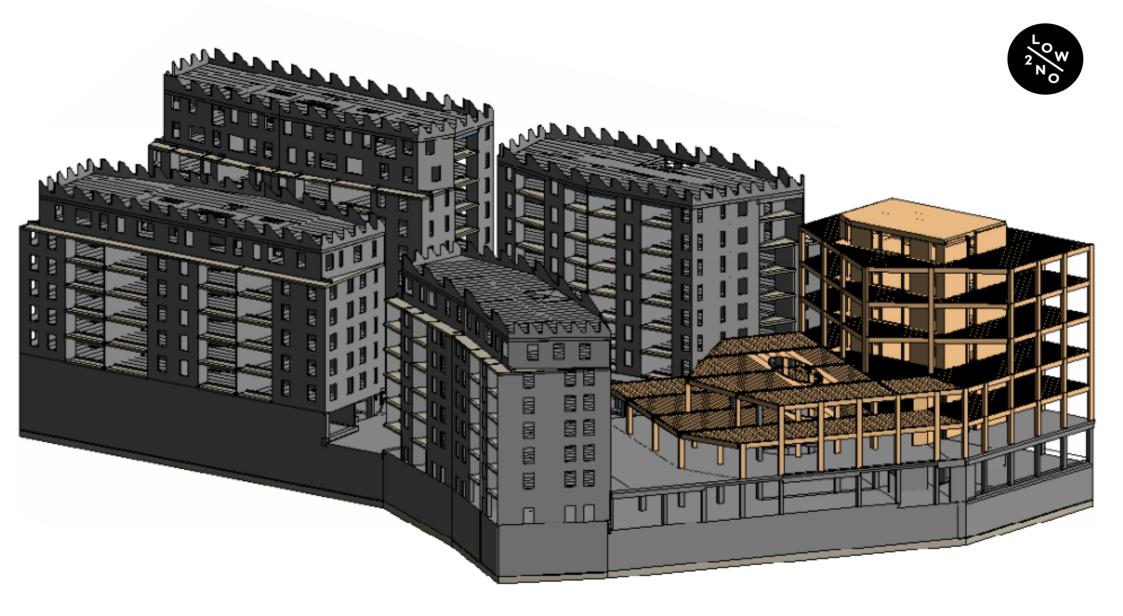
ARUP

Integrated Team Members

International Consortium

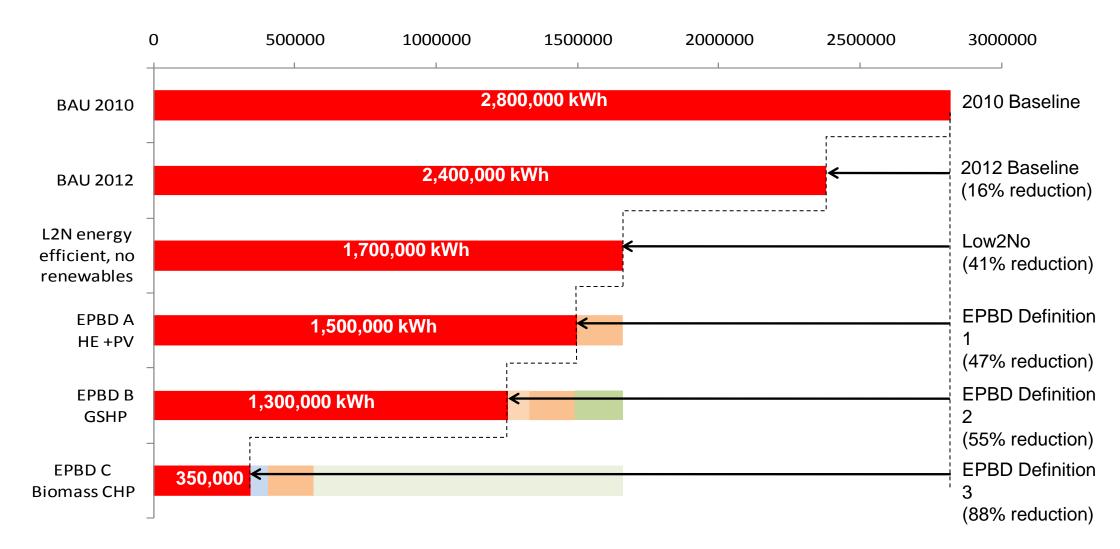
Local Finnish Consortium

SARC Architects


sauerbruch hutton

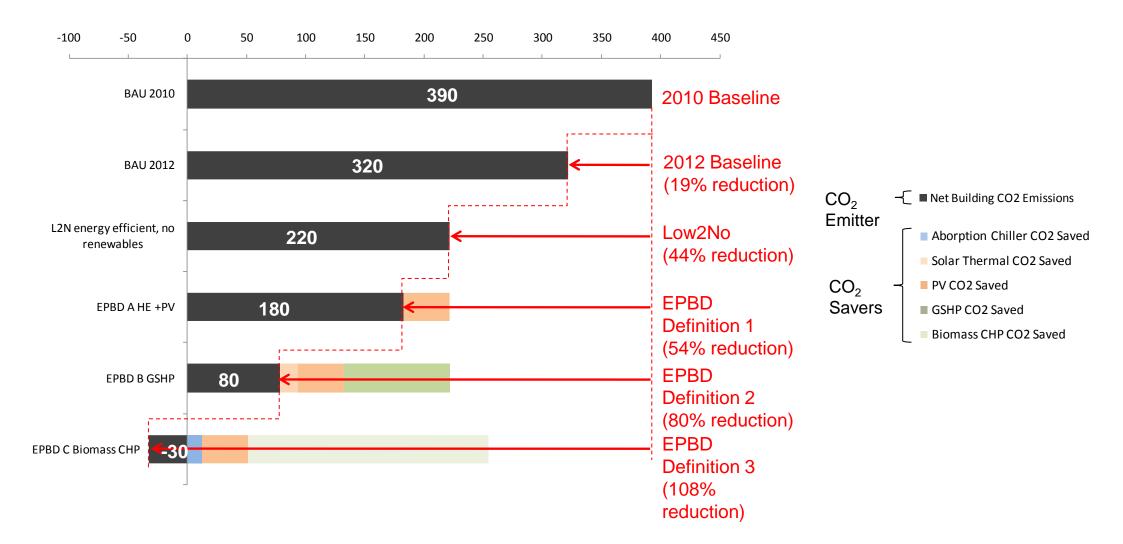
Main Themes

- Nearly zero energy building design
- EPBD 2020 compliance Cost effectiveness
- Optimising the mass mixed mode ventilation building
- Climate change scenaria Future overheating

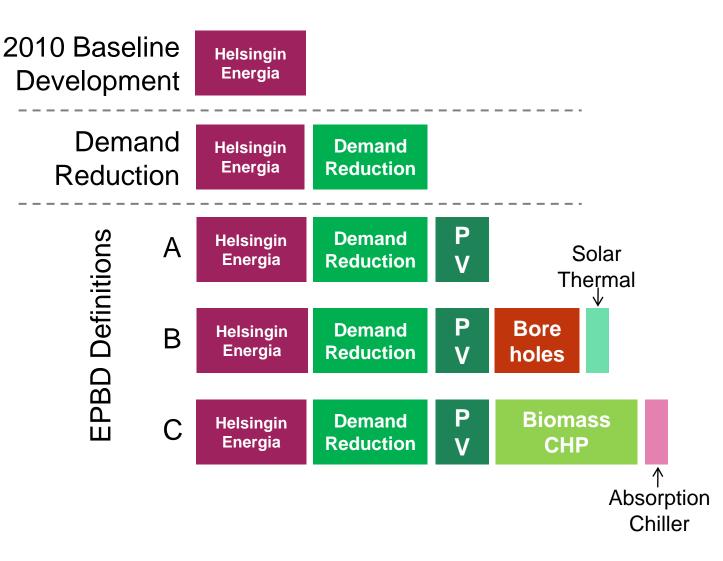

DIRECTIVE 2010/31/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 19 May 2010 on the energy performance of buildings (recast)

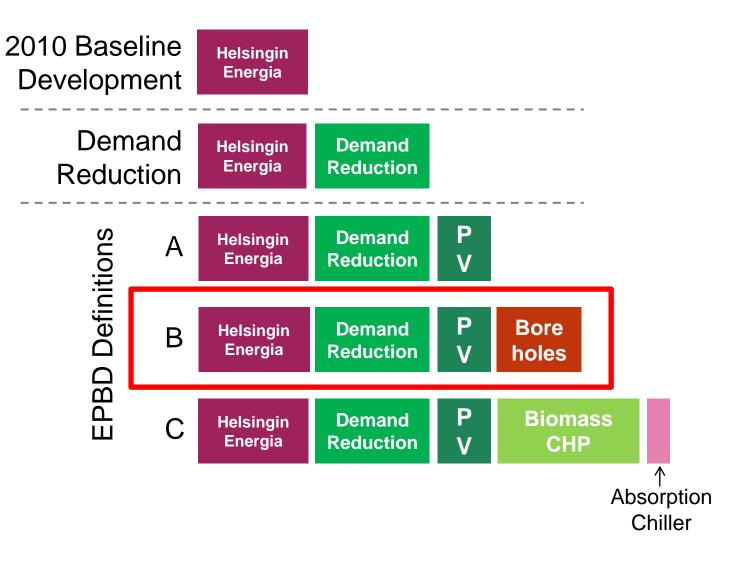
the Member State's detailed application in practice of the definition of nearly zero-energy buildings, reflecting their national, regional or local conditions, and including a numerical indicator of primary energy use expressed in kWh/m² per year. Primary energy factors used for the determination of the primary energy use may be based on national or regional yearly average values and may take into account relevant European standards;

Primary energy kWh/yr



Excludes Occupant Equipment load


Tonnes CO₂/yr


Bundles and EPBD Definitions

Bundles and EPBD Definitions

Target energy benchmarks

The target energy benchmarks developed during the scoping and concept design stages are presented in the table below. These are given as **primary energy** values (they include the weighted energy factors for heating, cooling and electricity).

Office Area		Primary Energy	Use (kWh/m2/yr)	
			Concept Design	
	BAU 2010	BAU 2012	Low2NO	Sitra Target
Space and vent heating	43	33	21	21
Hot water heating	7	4	4	4
Heating sub total	50	37	25	25
Cooling Electrical	12	18	2	
Cooling	8	13	1	8
Fans and pumps	24	30	10	14
Lighting	76	44	36	30
Equipment	54	48	48	44
Electrical sub total	154	122	94	88
PV			-14.1	-18
Total	212	172	106	103
Reduction from BAU2010	0%	19%	50%	52%

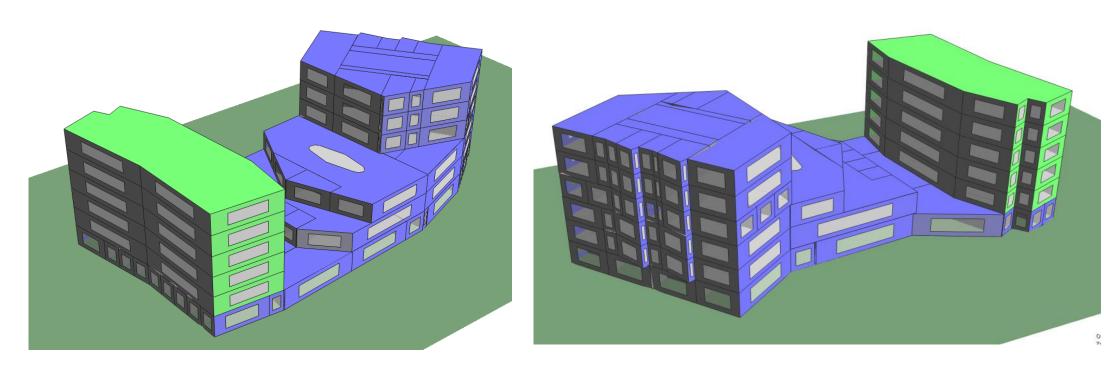
Targets set by the client (Sitra)

Cost effectiveness - Life cycle analysis - Net present value

The objective of cost-effective or cost-optimal energy efficiency levels may, in certain circumstances, for DIRECTIVE 2010/31/EU

Demand reduction and NPV results

The demand reduction measures that have been modelled are :


- Wall U Values
- Window U ValuesAir tightness
- Fabric

 - External Shading
 - Heat recovery + SFP
 - Low energy lighting
 - Daylighting Control
- M&E
- Thin Client IT
- Elevators
- Domestic Hot water
- Behavioural • Evening and Weekend Turn down change

Dynamic thermal modelling

North West View

South East View

The full office space, shown here in blue, has been modelled in IES (Integrated Environmental Solutions Software) in order to calculate the heating and cooling demands of all the Business As Usual(BAU) and energy saving measures. The residential block, Hitas (green), has also been modelled in order to generate an accurate shading file. Spreadsheets have been used to develop these results and model different electrical energy saving measures.

Dynamic reduction measures Business as Usual (BAU)

	Energy Reduction Measures													
0	Level of demand reduction	Wall U Value	Window U Value	Airtightnes s	Heat recovery	Hot Water demand reductions	Solar Shading	Low energy lighting	Office Daylight control	Thin Client	SFP	Elevators	Occupant turndown (evenings and weekends)	
Affected energy demand; % demand above BAU 2010		0.170	1.0	0.10	65%	BAU - Normal flow	None	BAU	BAU Normal	Fat Client	2.5/1.8	BAU	Some weekend turn down	BAU 20 'Baseli
En	nergy demand affected	heating/ cooling	heating/ cooling	heating/ cooling	heating	hot water	heating/ cooling	elec- lighting/ cooling/	Elec -lighting	elec- lighting/ cooling/	elec- fans and pumps	elec- other	elec- lighting/ cooling/ heating	

Dynamic reduction measures

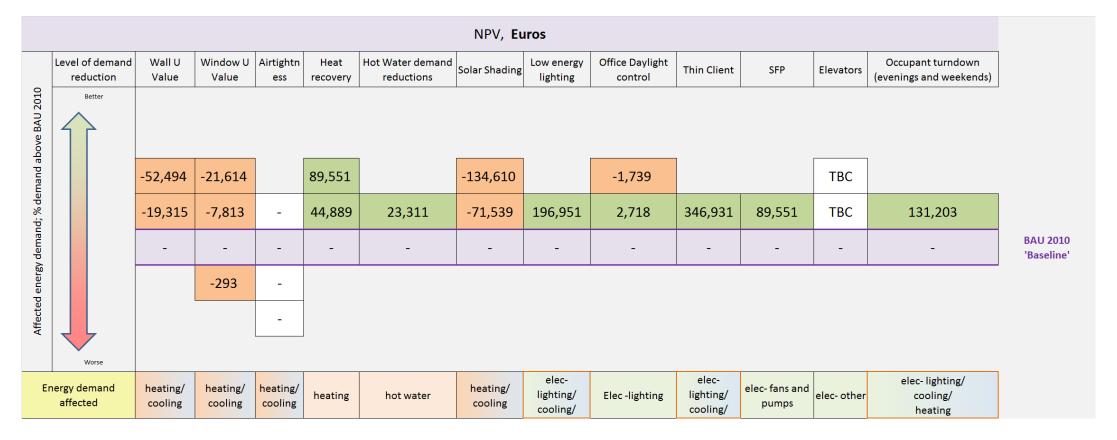
Parametric study

	Energy Reduction Measures														
10		f demand uction	Wall U Value	Window U Value	Airtightnes s	Heat recovery	Hot Water demand reductions	Solar Shading	Low energy lighting	Office Daylight control	Thin Client	SFP	Elevators	Occupant turndown (evenings and weekends)	
BAU 202	4										_				
Affected energy demand; % demand above BAU 2010			0.100	0.6		80%		Option 2		Daylighting Control (With atrium)			Kone Mini Space + EE		
; % dem			0.135	0.8	0.05	73%	low flow	Option 1	Task Lighting	Daylighting Control (No	Thin Client	1.5/1.0	Kone Mini Space	More weekend turn down	
demand			0.170	1.0	0.10	65%	BAU - Normal flow	None	BAU	BAU Normal	Fat Client	2.5/1.8	BAU	Some weekend turn down	BAU 2010 'Baseline'
energy (1.2	0.15										
ffected					0.20										
Ā	4														
En	ergy der affecte		heating/ cooling	heating/ cooling	heating/ cooling	heating	hot water	heating/ cooling	elec- lighting/ cooling/	Elec -lighting	elec- lighting/ cooling/	elec- fans and pumps	elec- other	elec- lighting/ cooling/ heating	

Dynamic thermal modelling

Whole energy results

							Total Primary Energy	of Impact	ed Energy Field (kWh/	/m²/yr)					
	Level of d reduc		Wall U Value	Window U Value	Airtightn ess	Heat recovery	Hot Water demand reductions	Solar Shading	Low energy lighting	Office Daylight control	Thin Client	SFP	Elevators	Occupant turndown (evenings and weekends)	
Affected energy demand; % demand above BAU 2010	Bette	er		-											1
mand al			51.6	49.4		33.4		51.9		74.9			4.9		
ıd; % de			52.4	51.2	50.1	38.3	3.8	52.3	90.3	75.1	62.19	14.66	6.6	78.32	
y demar			53.1	53.1	53.1	43.3	7.0	53.1	142.1	76.0	74.39	24.78	11.3	100.13	
d energ				54.9	55.9										
Affecte		Ļ			58.9										
	Wors	5e				1									
	Energy demand aff	ected	heating/ cooling	heating/ cooling	heating/ cooling	heating	hot water	heating/ cooling	elec- lighting/ cooling/	Elec -lighting	elec- lighting/	elec- fans and	elec- other	elec- lighting/ cooling/	



Dynamic thermal modelling: Whole energy results (%)

		Total Primary Energy of Impacted Energy Field (%)													
		l of demand eduction	Wall U Value	Window U Value	Airtightn ess	Heat recovery	Hot Water demand reductions	Solar Shading	Low energy lighting	Office Daylight control	Thin Client	SFP	Elevators	Occupant turndown (evenings and weekends)	
	1	Better		1	1		1	1	1	L	1	1	1		
			-3%	-7%		-29%		-2.3%		-1%			-131%		
			-1%	-4%	-6%	-13%	-85%	-1.5%	-57%	-1%	-20%	-69%	-71%	-28%	
			0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	BAU 'Bas
				3%	5%										
		Ļ			10%										
		Worse									-				
Ξn	affeo		heating/ cooling	heating/ cooling	heating/ cooling	heating	hot water	heating/ cooling	elec- lighting/ cooling/	Elec -lighting	elec- lighting/ cooling/	elec- fans and pumps	elec- other	elec- lighting/ cooling/ heating	

Net Present Value (NPV) summary table

Assumptions

- 1. Cost taken from Arup, Granlund, and various manufactures
- 2. NPV over system lifetime (30 years in most cases)
- 3. Discount factor set at 4%

Final energy benchmarks

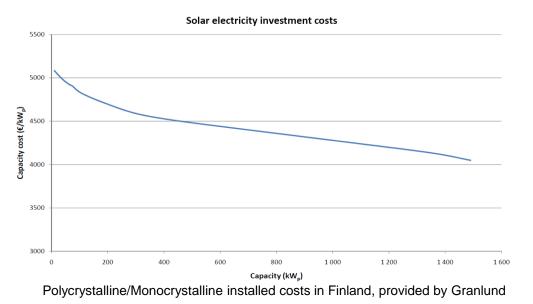
Having implemented the cost effective measures in all areas of energy use the final energy benchmarks for the L2N scheme proposed at scheme design stage are presented here on the right.

Office Area		Primary E	nergy Use (kWh/m2/yr)		
					L2N Scheme
	BAU 2010	BAU 2012	Concept Design Low2NO	Sitra Target	Prosposed
Space and vent heating	43	33	21	21	28
Hot water heating	7	4	4	4	4
Heating sub total	50	37	25	25	32
Cooling Electrical	12	18	2		
Cooling	8	13	1	8	5
Fans and pumps	24	30	10	14	9
Lighting	76	44	36	30	30
Equipment	54	48	48	44	37
Electrical sub total	154	122	94	88	76
PV			-14.1	-18	-18
Total	212	172	106	103	95
			/		
Reduction from BAU201	0%	19%	50%	52%	55%

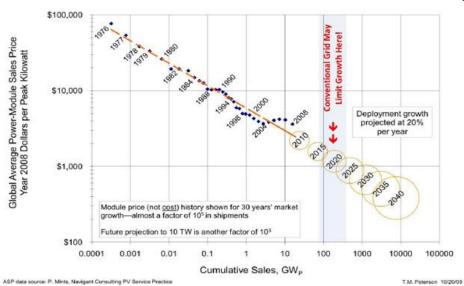
PV Life cycle analysis

NPV Analysis

Three NPV analyses have been carried out to demonstrate the cost effectiveness of the PV for different assumed phasing and allocation of feed in tariffs.


NPV Analysis 1 – full facade and roof installation in 2012

NPV Analysis 2 – full facade installation in **2012**; full roof installation in **2020**

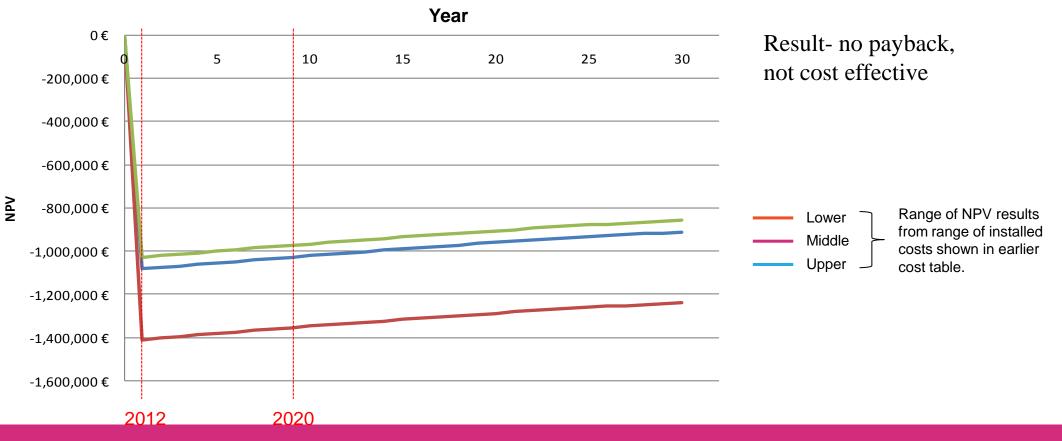

NPV Analysis 3 - full facade and roof installation in **2020**

PV Cost Study

The cost of PV has been volatile in the past 5 years due to surges in demand and the development of new manufacturing techniques.

This Navigant graph is typical of most available PV cost trends and shows that a 50% reduction in average PV installed costs is possible in the next 10 years

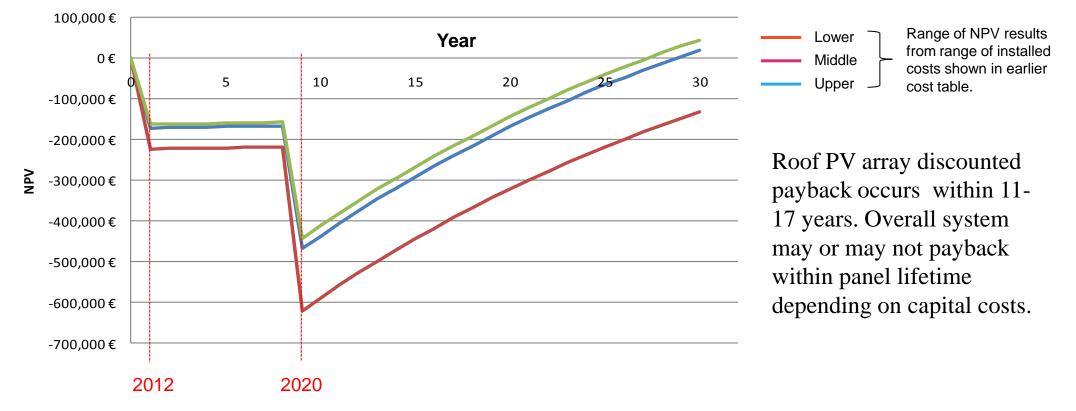
The Navigant graph is typical of most available PV cost trends and shows that a 50% reduction in average PV installed costs is possible in the next 10 years.


		PV Cost Range (€/kWp)										
	Lo	wer	Mid	dle	Up	per						
	2012	2020	2012	2020	2012	2020						
Monocrystalline	4750	2375	5000	2500	6500	3250						
Polycrystalline	4750	2375	5000	2500	6500	3250						
Hybrid	5714	2857	6015	3007	7819	3910						
Thin film	4385	2192	4615	2308	6000	3000						
	-[5%	Midra	ange	+30%							

NPV Analysis 1

Modelling assumptions:

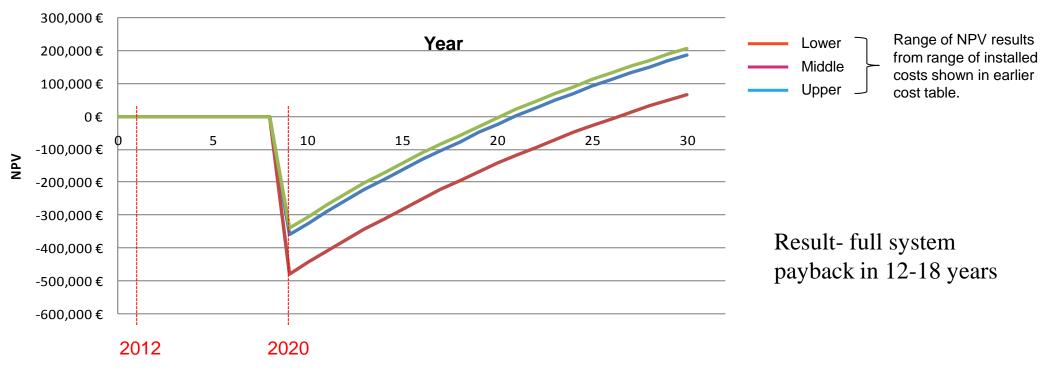
- Option F Array Modelled
- Facade and roof arrays both installed in 2012
- No feed in tariff
- CO2 savings traded (€32- € 45/tonne, 60 tonnes/yr)
- 4% discount factor



NPV Analysis 2

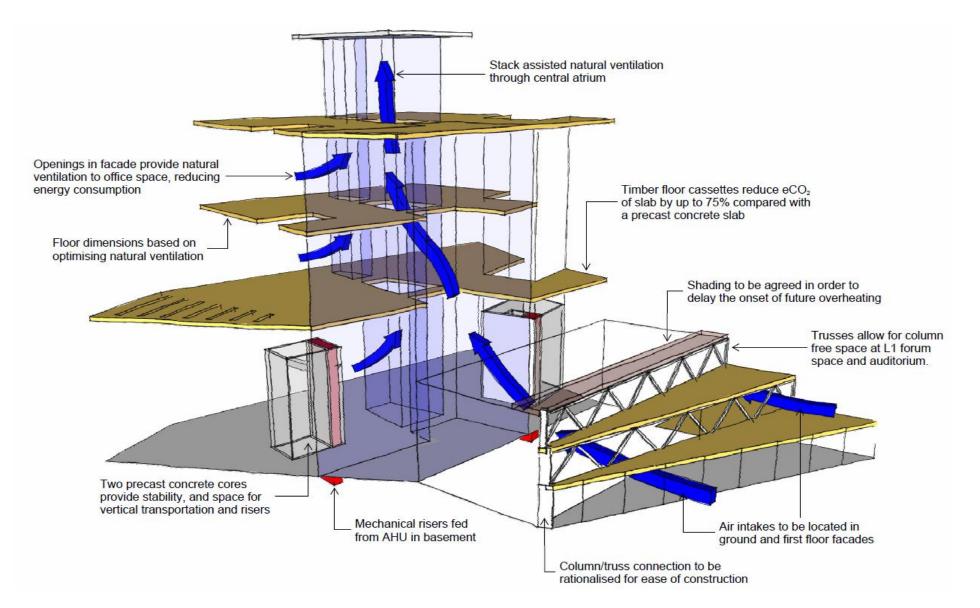
Modelling assumptions:

- Option F Array Modelled
- Facade installed in 2012 and roof array installed in 2020
- No feed in tariff for the facade array, 30c/kWh feed in tariff for roof array
- CO2 savings traded (\in 32- \in 45/tonne, 60 tonnes/yr)
- 4% discount factor

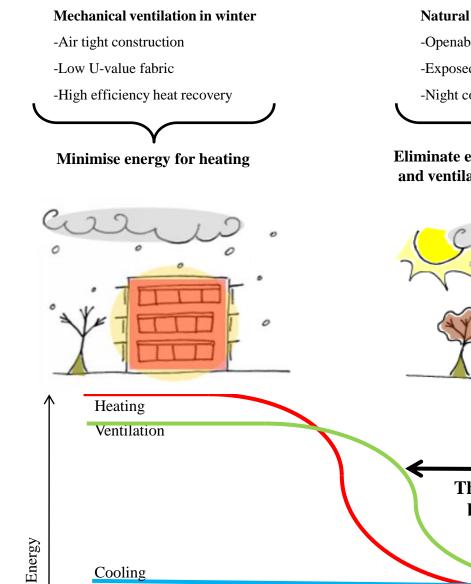


NPV Analysis 3

Modelling assumptions:


- Option F Array Modelled
- Facade and roof arrays both installed in 2020
- 30c/kWh feed in tariff for the whole array
- CO2 savings traded (€32- € 45/tonne, 60 tonnes/yr)
- 4% discount factor

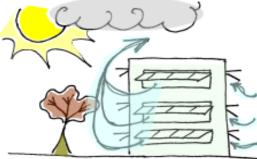
Mixed mode - Naturally Ventilated Office



Mechanical Services – Mixed System

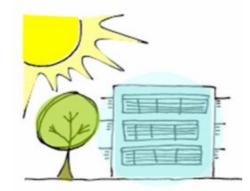
Cooling

Time


Natural ventilation when possible -Openable windows

-Exposed thermal mass interior

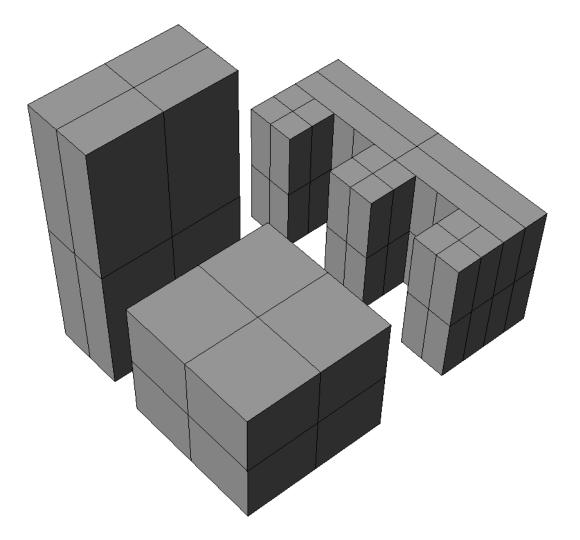
-Night cooling



Eliminate energy for comfort cooling and ventilation + Increase occupant satisfaction

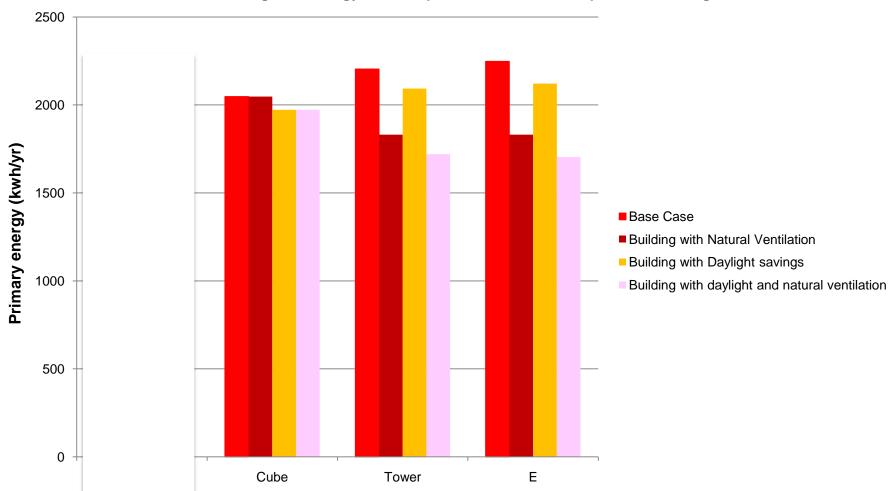
Mechanical cooling in peak summer -Deployable and permanent shading -Exposed thermal mass interior -Night cooling

Minimise energy for comfort cooling

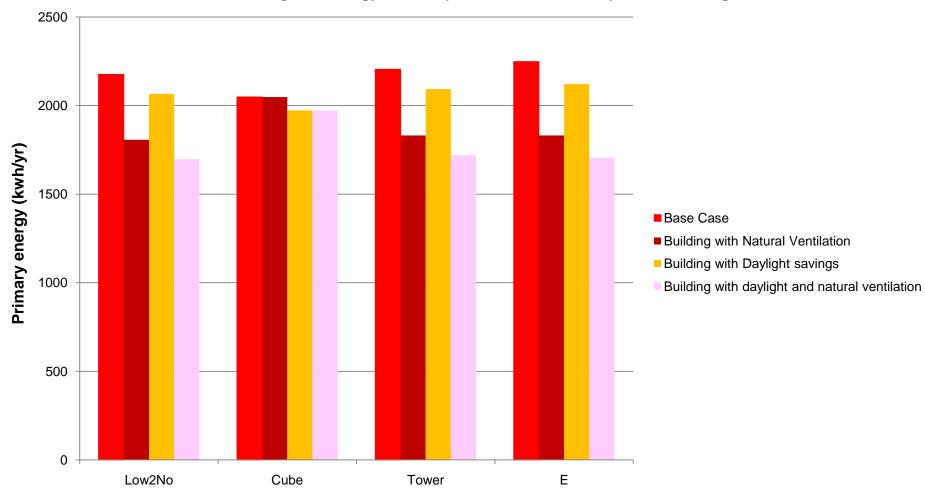


The most energy can be saved by maximising this period

The three geometries



Mass optimisation

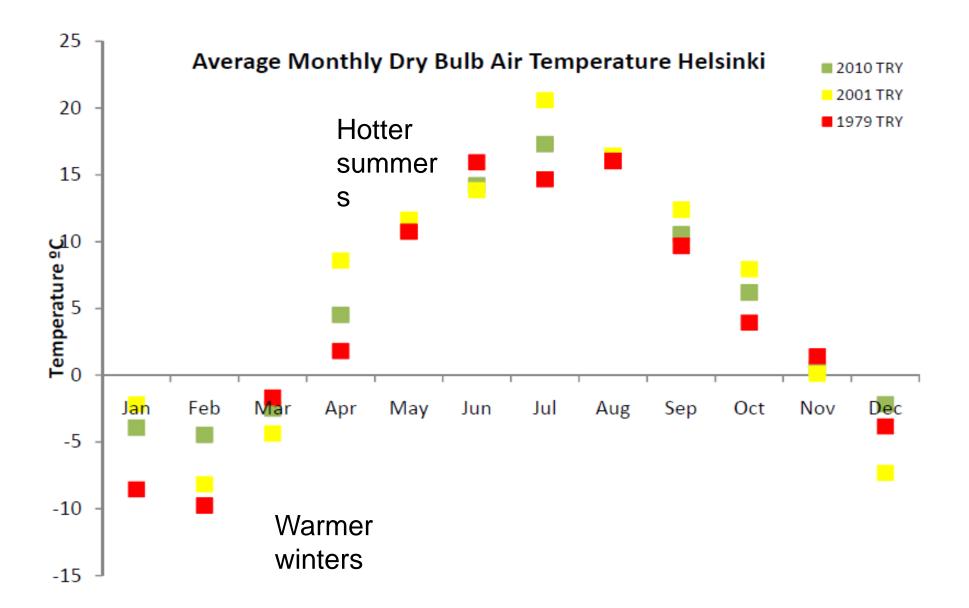


Annual Weighted energy consumption and associated potential savings

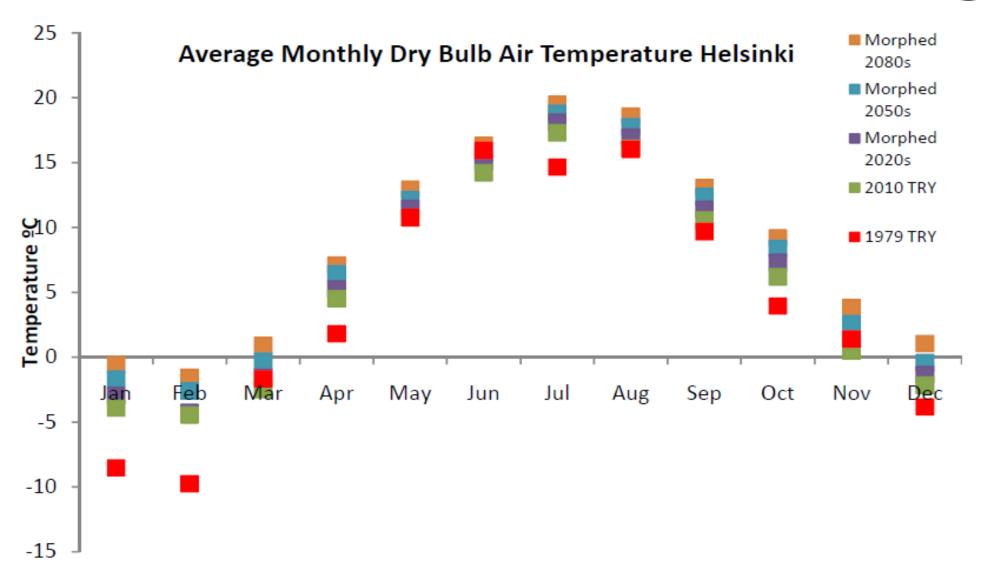
Mass optimisation

Annual Weighted energy consumption and associated potential savings

Climate change – overheating studies



Helsinki TRY



Morphed 2010 TRY

Overheating study residential block

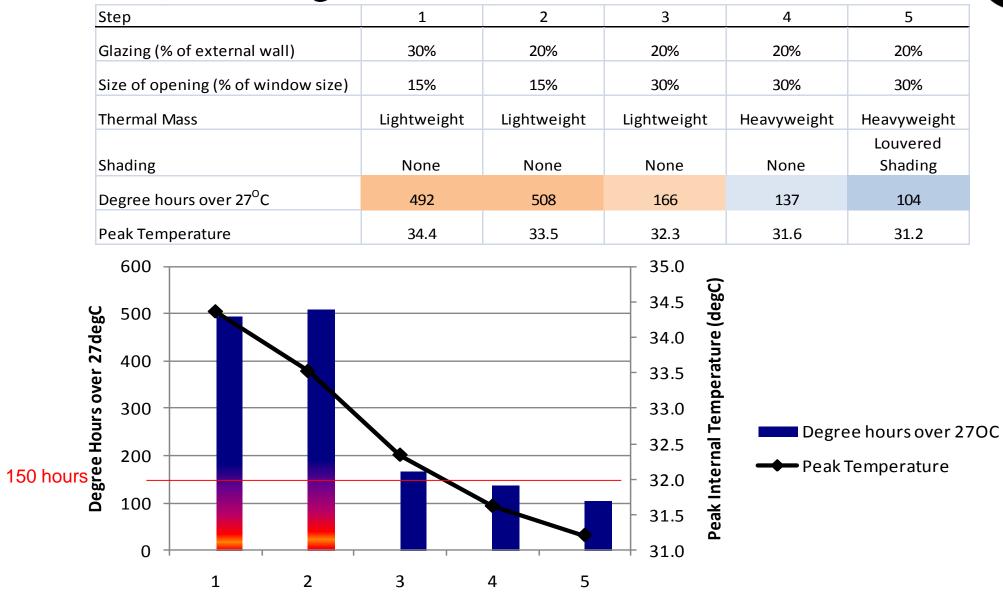
Five steps have been modelled to demonstrate the relative impacts of each of the following measures:

Basecase – 30% Glazing, no openable windows

Step 1 – 30% glazing - 15% openings for Natural Ventilation

Step 2 – 20% glazing, 15% openings for Natural Ventilation

Step 3 – 20% glazing, 30% openings for Natural Ventilation


- Step 4 More Thermal Mass
- **Step 5** External Shading

The Finnish 2012 D3 Regulations defines overheating in residential spaces as occurring at more that **150degree hours above 27°C per year**.

Results (excluding basecase)

Step#

Overheating study – Future weather data

4 more additional steps have been modelled

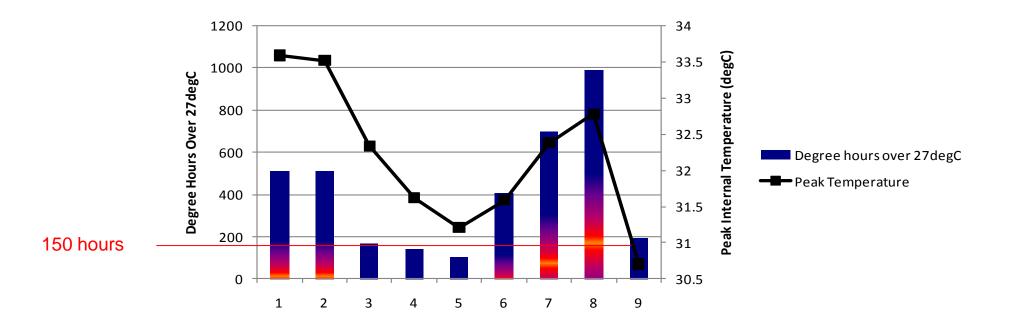
Step 6 – Step 5 with 2020 predicted weather file

Step 7 – Step 5 with 2050 predicted weather file

Step 8 – Step 5 with 2080 predicted weather file

Step 9 – Step 5 with 2080 predicted weather file and lower internal gains as

specified by Finnish Building Code on overheating D3 -2012


The Finnish 2012 D3 Regulations defines overheating in residential spaces as occurring at more that 150degree hours above 27°C per year.

Results (excluding basecase)

~	\sim	W
2	N	
	`` C	

Step	1	2	3	4	5	6	7	8	9
Glazing (% of external wall)	30%	20%	20%	20%	20%	20%	20%	20%	20%
Size of opening (% of window size)	15%	15%	30%	30%	30%	30%	30%	30%	30%
Thermal Mass	Lightweight	Lightweight	Lightweight	Heavyweight	Heavyweight	Heavyweight	Heavyweight	Heavyweight	Heavyweight
					Louvered	Louvered	Louvered	Louvered	Louvered
Shading	None	None	None	None	Shading	Shading	Shading	Shading	Shading
Weather File	2010		2010	2010		2020	2050	2080	2080
Internal Gains	L2N	D3							
Degree hours over 27 ^{deg} C	510	508	166	137	104	406	697	990	190
Peak Temperature	33.59	33.52	32.34	31.6	31.2	31.6	32.38	32.78	30.7

ARUP

Vasilis.maroulas@arup.com

Arup 13 Fitzroy Street W1T 4BQ, London, UK

THANK YOU

